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Dynamics and statistical mechanics of the Hopfield model 

A D Bruce, E J Gardner and D J Wallace 
Department of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3J2, UK 

Received 17 September 1986 

Abstract. We present a study of the Hopfield model of the memory characteristics of a 
network of interconnected two-state neuron variables. The fraction of nominated configur- 
ations which the model stores without error is calculated analytically as a function of the 
number, N ,  of neurons and the number, n,  of the nominated configurations. The calculation 
is tested by computer simulation. The noise-free (zero-temperature) phase diagram of the 
model is determined within a replica-symmetric solution of the mean-field equations. The 
model exhibits a phase transition at ai = n / N )  = a,=0.069; at this point the thermody- 
namic states having macroscopic overlap with the nominated configurations disappear, 
implying a discontinuous change in the fraction of bits (of any nominated configuration) 
recalled correctly. Large scale Monte Carlo simulations using a distributed array processor 
provide some support for the existence of a phase transition close to the predicted value. 

1. Introduction 

This paper describes a study of a model assembly composed of a large number of 
interacting two-state variables. The physical motivation for the model lies in 
neurobiology: with appropriate interpretations the model may be viewed as displaying 
properties (‘memory’, ‘learning’) characteristic of neural networks (Little 1974, Hopfield 
1982). The model? has, however, attracted considerable attention in the physics 
community (Amit et a1 1985a, b, 1986, Kinzel 1985, Dotsenko 1985, Parisi 1986), 
spurred by the recognition that the problems it poses are similar to those raised by 
the Sherrington-Kirkpatrick (1975) model of a spin glass, which it generalises. 

The model is composed of a set of N variables V,  (i  = 1 , .  . . , N )  each of which 
may adopt either of two values 1 or 0. In the neuro-physiological interpretation each 
variable characterises the state (‘firing’ or ‘not firing’) of a particular neuron. The 
collective behaviour of the model has two distinct controlling ingredients. 

Firstly, we define a configurational energy which serves to prescribe the effective 
environment of each variable. This energy function can be written in the form 

E ( { V ) ) =  - t C  T,,V,V,+.c u,v,. ( l . l a )  

The lower energy state of any particular variable V,  (given a particular configuration 
of all the other variables) is then V, = 1 (or V,  = 0) according as the effective local field 

(1 . lb)  

‘J i 

H, = c T,V, - U, 
I 

t We are aware that this model has its origins in much earlier work and can be regarded as a limiting case 
of other models. However we believe that it is appropriate to associate i t  with the name of Hopfield who 
appreciated its prototypical simplicity and the important role of the energy function ( 1 . 1 ~ ) .  
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is positive (or negative). In the neural context the interaction coefficients T,, represent 
the excitatory (T,, > 0) or  inhibitory (T,, < 0) effects of the activity of neuron j upon 
the activity of neuron i ,  mediated by their synaptic connection. The local field U, 
represents the effect of a threshold barrier against the excitation of neuron i. 

Secondly we define a configurational dynamics which prescribes the manner in 
which the local variables change in response to their environment. In keeping with 
the significance accorded to the model parameters the dynamics is chosen so that, with 
time, the assembly evolves to a configuration in which each local variable occupies 
the state favoured by the effective field (1.lb) it then experiences. These stationary 
states constitute local minima of the function E ( {  V}) with respect to the switching of 
any (single) variable. They may be thought of as representing patterns of 'neural' 
activity in which a neuron continues to fire (remains inactive) according to whether 
or not the net synaptic potential set up  by the activity of other neurons (the first term 
on the right-hand side of (1.lb)) exceeds the local threshold potential. 

There remains the crucial question of the choice of interaction strengths and 
threshold potentials. These parameters together serve to define the energy surface, E, 
in the space { V }  and thus, in particular, the set of local minima in that space. The 
essential (neural) aim of the model is realised by tuning these parameters to bring 
these minimum energy configurations (or at least a subset of them) into coincidence 
with (or as close as possible to) a set of n nominated configurations V'" ( r  = 1, .  . . , n). 
Within the neural context the nominated configurations are supposed to represent 
particular 'images', each expressed as an  N-bit word. The strategy of encoding these 
images (via the model parameters) in the energy surface realises a content-addressable 
form of storage ('memory'): a particular image may be identified ('recalled') from one 
of its fragments to the extent that the fragment configuration lies within the basin of 
attraction associated with the nominated image, and to the extent that the minimum 
of that basin does indeed accurately represent that image. 

We will not review here the arguments which suggest that this model of neuron 
function, though clearly oversimplified in detail, is plausible in structure. The interested 
reader is referred to Hopfield (1982) and Hinton and  Anderson (1981). We proceed 
rather to address the more detailed issues necessary to define the concerns of the 
present study, and to set it in the context of recent work. 

Let us consider then, in more specific terms, the assignment of the model parameters 
(the 'storage prescription'). The simplest prescription realising (in some measure) the 
aims set out above is defined by (Hopfield 1982) 

i # J  

T , , = o  

U,  = o .  
(1.2a) 

(1.26) 

The rationale of this choice is revealed by substitution into (1.lb).  For a particular 
configuration V'" one finds that the effective local field can be written as the sum of 
two terms 

If, as we shall suppose throughout this paper, the nominated images are described by 
random N-bit words, the first term in (1.3) has (average) magnitude $ and a sign which 
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is such as to sfubilise (the ith component of) the nominated image, V‘”. The second 
term, on the other hand, is independent of the value of Vir ) ,  may be stabilising or 
destabilising, and has mean zero and standard deviation N-’[( N - l ) ( n  - 1)/2]”2. To 
the extent that N is large compared to n, the first (‘signal’) term may thus be expected 
to dominate the second (‘interference’) term. To the extent that one can, in addition, 
neglect correlations amongst the elements of the local effective field one may then also 
expect that the set of vectors V‘” will display the desired stability. 

There is a second closely related storage prescription which makes the spin glass 
analogy more explicit. In this prescription the configurations are most naturally 
represented by a set of variables {S} where S, = 2 V,  - 1 takes on values + l .  The model 
parameters are chosen to be (Amit et a1 1985a, b, 1986) 

T,, = 0 

u,=;c K , .  
I 

i # j  ( 1 . 4 ~ )  

(1.46) 

Equation ( 1 . 4 ~ )  merely recasts ( 1 . 2 ~ ) :  the nominated configurations S‘” have elements 
taken to be *1 at random. The choice for the threshold potentials (1.4b) allows the 
total configurational energy ( 1 . 1 ~ )  to be written in the form (to within a configuration- 
independent constant) 

(1.5) 

where K ( = a )  is a constant whose value is irrelevant to the (‘zero-temperature’) 
behaviour studied here. Equation (1.5) has the form of the configurational energy for 
a model of an Ising spin glass with long-range interactions coupling all the ‘spin’ 
coordinates. However, in contrast to the spin glass model of Sherrington and 
Kirkpatrick (1975, 1978) the ‘exchange constants’ (the elements of the T,, matrix) are 
not drawn randomly from some distribution but are correlated in a fashion dictated 
by the storage prescription ( 1 . 4 ~ ) .  

The ‘signal plus interference’ picture outlined above suggests that this second 
storage prescription (the ‘S model’) functions in a very similar way to the first prescrip- 
tion (the ‘V model’). The two models are not, however, isomorphic (or, at least, not 
obviously so). The V model was studied in the seminal paper by Hopfield (1982) with 
the aid of computer simulations of networks with N = 30 and  N = 100 nodes. More 
recently, the S model has been studied in considerable detail by Amit et a1 
(1985a, b, 1986) using both analytic and computer simulation techniques. In this paper 
(preliminary versions of which have been reported by Wallace (1985, 1986)), we extend 
the study of both models. Using the ICL Distributed Array Processor ( D A P )  we have 
performed simulations, of the V model, using the much larger networks (up  to 4096 
nodes) which, we have found, are essential if one is to cope with the substantial finite 
size effects apparent in the model’s rich cooperative behaviour. In tandem with this 
numerical work we have performed analytic calculations, extending the analysis of the 
S model by Amit et a1 (1985a, b, 1986) and  generalising it to deal also with the V model. 

Our specific concerns here are restricted to the effectiveness of the storage prescrip- 
tion (1.2~2, b )  and, in particular, its dependence upon the storage ratio a = n /  N. There 
are at least two rather different criteria for an  effective storage prescription. Firstly it 

E(IS}) = -% c T,S,S, ,, 
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is desirable that the typical minimum energy state q'r', singled out by the configurational 
flow emanating from a nominated state V'", should lie as close as possible to that 
nominated state: recall is then 'accurate'. Secondly it is desirable that the basin of 
attraction of each such minimum, V'r), should be as large as possible: recall is then 
indeed by address of content. In this paper we shall consider only the former criterion. 
The effectiveness (in this sense) of the storage prescription may then be measured by 
the function p ( D )  prescribing the distribution p of the fractional Hamming distance 
D defined by 

and characterising the difference between nominated states V'" and the minimum 
energy states to which they are linked by the configurational flow. Clearly the 
storage prescription operates accurately to the extent that the weight of this function 
is concentrated near D=O. One may characterise the degree to which this aim is 
realised through either of two parameters. 

Firstly we may define 

F, = p (  D = 0 )  ( 1 . 7 ~ )  

giving the mean fraction of nominated configurations which are stable against the 
configurational dynamics (the fraction of images which are stored without error). In 
9 2 we describe an analytic calculation of F , ,  as a function of N and n, which refines 
the 'signal plus interference' picture by incorporating the correlations which that picture 
neglects. Complementary Monte Carlo calculations are reported in § 4 and agree well 
with the analytic theory. 

The collective behaviour of the model is, however, more explicitly displayed in the 
parameter 

F B z l - Z D p ( D ) z l - D  (1.7b) 

giving the mean fraction of the local variables of a nominated configuration V : r )  
coinciding with those of the associated local minimum, pyri, i.e. the fraction of bits 
which are recalled without error. The storage prescription is then effective to the extent 
that FB exceeds 0.5, its value in the limit in which there is no coherent overlap between 
the configurations V'" and p ( r ) .  We have studied this quantity both by direct numerical 
simulation and by somewhat less direct analytic calculation. 

The analytic studies, following those of Amit e? al (1986) for the S model, and 
reported in § 3, use the replica techniques of spin glass theory to identify the stable 
states of the model. The analysis reveals the existence of a critical value, a,, of the 
storage ratio. Above a ,  (within this framework) the model possesses no stable states 
having macroscopic overlaps with the nominated configurations; below a ,  there do  
exist such states, the associated overlap remaining finite (indeed very large) as a + a,. 
The value a,  at which this phase transition occurs is located within the approximation 
that replica symmetry breaking is ignored. 

It is tempting but (for reasons touched on below and elaborated in 90 4 and 5 )  not 
obviously correct to infer that this phase transition will be signalled by a jump 
discontinuity in the fraction FB. In § 4 we present the results of numerical simulations 
designed to check this inference. There is, indeed, evidence for a phase transition 
occurring at a value of a close to that predicted by the analytic theory. 
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The link between the analytic and  the numerical studies is, however, a subtle one. 
The analytic calculations effectively identify the states q") (1 .6 )  with minima of the 
equilibrium free energy of the model, with configurational energy ( l . l a ) ,  in the zero 
temperature limit. The calculation makes no reference to the configurational dynamics: 
the results are uniquely prescribed by the energy function. On the other hand, the 
numerical calculations determine the states ? ( r )  (in direct accordance with the way 
we have defined them) by following the configurational flow emanating from the state 

. In this case the results clearly can reflect the details of the dynamics. It is not 
clear what dynamic prescription (if any) will effectively fulfil the same averaging 
processes as are implicit in the 'equilibrium' theory. We have studied two prescriptions. 
In the first, the updating of the local variables is completely asynchronous and the 
energy a strictly decreasing function of time. In the second the updating is partially 
concurrent and the energy is only (much) more likely to decrease than increase. The 
results, it transpires, are perhaps surprisingly insensitive to these differences. 

v( r )  

2. The stability of nominated configurations: analytic studies 

2.1. Preliminaries 

In this section we calculate the dependence of the mean error-free-image fraction F, 
( 1 . 7 ~ )  upon the number, N, of nodes in the network and the number n ( =  a N )  of 
nominated images. The calculation is carried out for a model which is somewhat more 
general than the S and V models introduced in the preceding section and  which includes 
these models as special cases. Specifically we suppose that the local effective field at  
site i has the form 

H,  = C T,,i[ ( 1 - A ) + ( 1 + A )( 2 V, - l)] 

keeping the convention that the stable state of a neuron at site i has V, = 1 ( V ,  = 0) 
for H, > 0 ( H ,  S 0). Setting the control parameter A to have value A = 0, or A = 1, one 
recovers ( l . l b )  with the V model (1.2) or the S model (1.4). The requirement that a 
particular nominated image, V'", is stable against the configuration flow is equivalent 
to the condition that the quantity 

R ! ' ) f  (2V:"- l ) H : r )  (2.2) 
is positive for each site i, where H:')  signifies the effective field (2.1) for the particular 
configuration V'". Explicitly, the nominated image is stable (unstable) according as 
to whether 

N 

P ,=  JJ e(R j r ' )  
, = I  

(2.3) 

is 1 (or 0). The fraction of a particular set of n nominated images which will then be 
stored without error is 

1 "  
F, = - C P, 

n 
and the mean error-free-image fraction is 

FIW, .) = (Fl) 
where the average is taken over an  ensemble of nominated configurations. 

(2.4) 

(2.5) 



2914 A D Bruce, E J Gardner and D J Wallace 

Throughout this paper we shall be concerned with the limit in which N and n are 
large with CY = n / N  finite. I t  turns out that, in this limit, the correlations between 
terms appearing in the sum (2.4) can be neglected so that (to within fluctuation 
corrections O( l / f i ) )  the fraction F,  for a particular nominal set (2 .4)  coincides with 
the ensemble average ( 2 . 5 ) .  However, correlations between the terms in the product 
( 2 . 3 )  are important: the effective fields at different sites are correlated by virtue of the 
correlations amongst the elements of the T,, matrix introduced by the storage prescrip- 
tion, most obviously through the symmetry which it imposes upon this matrix. 

2.2. Approximate treatment 

We first discuss the approximation in which the correlations identified above are 
neglected. The 'signal plus interference' picture outlined in the preceding section may 
then be developed in a straightforward way (Hopfield 1982, Weisbuch and Fogelman- 
Soulie 1985). Specifically, making the decomposition ( 1 . 3 )  (for the generalised model 
considered here) in (2 .2)  we find 

1 R j " = -  1 [ ( l + A ) + ( l  - A ) ( 2 V j r ) - l ) ]  
2N jti 

1 
+ - ( 2 V j " - l )  c ( 2 V y - l )  1 (2V;"'l) 

2 N  P f l  J # I  

x [ ( 2  V ; r ) -  1)( 1 + A )  + ( 1  - A ) ] .  (2 .6)  

The distribution of the first (signal) term (over an ensemble of nominated states) has 
mean ( N  - 1 ) (  1 + A ) / 2 N  and standard deviation of order N-"'. The distribution of 
the second (interference) term is Gaussian with mean zero and standard deviation 
[ 2 (  N - 1 ) (  n - 1 ) (  1 + A')]1'2/2N. The probability that a particular element V;" is recal- 
led correctly is then (in the prescribed limit) 

(2 .7 )  

The neglect of the intersite correlations in the product ( 2 . 3 )  then allows one to write 

with 

4 a (  1 + A') 

where 

(2 .86)  

( 2 . 8 ~ )  

We shall see that the functional form (2 .8a)  is preserved in the exact calculation; the 
specific form of the function f o ( A ,  C Y ) ,  given in (2 .86) ,  is not. 
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A measure of the storage capacity can be obtained by expanding fo for small a, to 

Since P, remains finite provided a < [ (1 + A )2/4( 1 + A ’)I( l / ln  N )  the maximum 
number of nominal vectors for which there is a finite probability of perfect storage is 

N ( 1 + A ) ’  
In N 4 ( 1 + A 2 ) ’  n m a x  - - (2.10) 

Expression (2.9) will turn out to be correct in the exact calculation, so that (2.10) 
is indeed a true measure of the storage capacity. The probability of perfect recall (of 
a given image) is therefore zero for any finite value of a and the optimal storage 
capacity is obtained for the S model ( A  = 1 ) .  

Finally, we note that, according to this approximate calculation, the dependence 
of fo upon A and a has the simple scaling form 

(2.11) 

We shall see that, when correlations are included, this scaling behaviour holds only 
in the a + 0 limit. 

2.3. Exact calculation 

In order to calculate FE( N,  a )  exactly, the following integral representation for the 0 
functions will be used: 

(2.12) 

Then 

The sums over i a n d j  in the ‘interference’ term in (2.6) can be decoupled by adding 
and subtracting the missing i = j term and using the integral representation 

da, db, 
exp( -iA,B,/ N )  = [-, ( 2 7 ~ / N ) ” ’  [-,(Zr/N)”’ 

B,(a,-b,) 

with 

A S = C  ~ , ( 2 V ~ ’ ) - 1 ) ( 2 V ~ ~ ) -  1 )  
I 

and 

B, = 1 (2 V:” - 1 )f[ (2 vjr) - 1)( 1 + A ) + ( 1 - A )]. 
J 

(2.14) 

(2.15) 

(2.16) 
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Then, after doing the trace over the random variables V : r )  and VIs’, 

(2.17) 

Since from equation (2.14) a, and b, are of the order of the overlap between pairs 
of input vectors, which is - 1 I J N  for a finite, only terms in expression (2.17) up to 
second order in a, and 6, need be kept (for large N ) .  

Letting 

1 (a ,+bsI2 a = -  
a r # r  2 

(2.18) 

and introducing Lagrange multipliers A, B, C, D, respectively, conjugate to the 
constraints in (2.18) so that, for example, 

(2.19) 

the integrals over ri and over a, and b, are decoupled and so can be done easily. 
RI( N, a) is then given for large N by the saddle point of an integral over the variables 
a, b, c, d ,  A, B, C and D. The saddle-point equations for A, B, C, c, d are algebraic 
and so the integrals over these variables can be done explicitly. One then finds that, 
as N + CO, Fl( N, a) can be written in the form 

(2.20) 
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U 
G(u, b, D )  = a [ b + i  In ( t ( l + D ) + i h ' ( l - D )  

1 (1-b)'  
2 2a 

--+- [ i ( l +  D ) + f ( l  - D)A2]+i(1 + D )  

x exp{ -i[ p + bA ( f ) I l 2 l 2 }  ] (2.21) 

and so, as N+m,  

where f ( A ,  a )  is the extremum over a, b and D of G(a ,  b, D ) .  The leading finite size 
correction to (2.22) is effectively a constant (N-independent) prefactor which originates 
in the determinants associated with the integrations around the saddle point. The 
function f ( A ,  a )  can be calculated analytically as a + 0 by solving the saddle-point 
equations for a, b and 0, with the result 

(2.23) 

as a + 0. 
The leading term in this expression agrees with the approximate calculation (2.9) 

and satisfies the scaling relation (2.11). However, the correction terms break this 
scaling form, showing that (except in the a + 0 limit) the function F,( N,  a )  does not 
have a universal (A-independent) form. 

It is also possible to solve for f as a + W .  In this limit the signal term vanishes 
and so F, (N,  a )  is simply equal to the total number of metastable states divided by 
2? For A = 1,  we recover the result for the Sherrington-Kirkpatrick model (Bray and 
Moore 1980, De Dominicis er a1 1981) 

f (  1 , ~ )  = 0.4939 (2.24) 
and for A = O  we have 

f ( 0 ,  CO) = 0.5886. (2.25) 
For general values of a, f can be determined by solving the saddle-point equations 

numerically. In figure 1 we show the results for the S model ( A  = 1 )  and the V 
model ( A  = 0); the results are plotted as functions of the scaled storage ratio ol' = 
a ( 1  + A ')/( 1 + A )2  to reveal the extent of the departure from the scaling form suggested 
by the approximate analysis (0 2.2), the explicit result of which is also shown. In  0 4.2 
we will compare these results (for the V model) with those yielded by computer 
simulation for various N values. 
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Figure 1. The logarithm of the error-free-image fraction F, ( N ,  a) for the S model, the V 
model and as given by the approximate calculation discussed in 5 2.2.  The abscissa is the 
scaled storage ratio = cr(1 + A 2 ) / ( 1  + A ) 2 .  

In carrying out the above calculations we have effectively supposed that the 
correlations between different P, in (2.4) are negligible. This assumption can be justified 
by repeating the calculation using replicas; corrections come from overlaps between 
different nominated configurations and are down by factors of order l / f i  on the 
quoted result. 

One can also consider other ways of changing details of the storage prescription. 
For example, a diagonal term T,, = a x  can be added to 7,. For A = 1, the leading term 
as a + 0 is given by the approximate model 

(2.26) 

and again non-leading terms do not satisfy this relation. 
In general, although increase in the diagonal' term or tuning of A can lead to an 

increase in storage capacity, this is compensated by an increase in the number of 
spurious metastable states (Gardner 1986). This means that associative memory should 
decrease: it is necessary to start nearer the nominated configuration in order to iterate 
to the associated minimum. 

3. Stable configurations: a mean field theory 

In this section we will describe the thermodynamics of the model defined by the 
configurational energy of ( 1 . 1 ~ ) .  At zero temperature this will allow us to calculate 
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the Hamming distance between energy minima and nominated configurations and 
thence (with certain caveats) the error-free-bit fraction defined in § 1 .  The stability of 
these energy minima with respect to noise can then be studied by examining the 
thermodynamics at finite temperature. 

The free energy of the model is given by its quenched average over all possible 
sets of nominated configurations { V:"} and can be calculated using the replica method: 

(Z ' )  - 1 
- B 9 =  lim (3.1) 

where the partition function Z is given by 

z = Tr exp[-PE({ V,})l (3 .2)  

where P is the inverse temperature and where E ( {  V , } )  is the configurational energy 
defined in ( 1 . 1 ~ ) .  The method requires the analytic continuation from positive integer 
to zero number of replicas 1. For positive integer values of 1 

{ V , I  

The trace is over all possible configurations of the V: for each replica y, and T,/ is 
given by (1 .2) .  

The sites can be decoupled by introducing variables m: for each nominated 
configuration r and each replica y, 

(3.4) 

We define the overlap of the thermal expectation, vy, of the Vy for the replica y with 
a nominated configuration r by 

I 
(3.5) 

This overlap can be macroscopic (of order 1 )  for only a finite number (in comparison 
with N) of values of r. Otherwise it is microscopic (of order 1,"). 

The sum over r inside the trace in (3.4) can be separated into two parts-a finite 
subset r of values of r which have a macroscopic overlap with at least one of the 
replicas y and a subset with a macroscopic number (of order n )  of elements which 
have microscopic overlaps with each replica y. In order to identify the extensive part 
of the free energy it is necessary to expand the exponential inside the trace in (3.4) 
up to second order in m:(2 V!" - 1 )  VY for each r @ r and at each site i. Then, after 
averaging over the nominated configurations {Vir)}  for r e  r, (3.4) becomes 

k :  = - 1 (2 Vir' - 1) VY. 
N i  



2920 A D Bruce, E J Gardner and D J Wallace 

where T y  denotes the subset of values of r which have a macroscopic overlap with 
the replica y and the average ( ) in (3 .6)  now represents an average over nominated 
configurations { V : r ) }  with r E r. The contribution of terms proportional to m: where 
r E r but r e  T y  can be neglected since they are of order 1/v% and since the number 
of these terms is finite. 

The integrals over the mT for r E r can be done by introducing variables xy, y y  for 
each y and qys,  t rb  for each pair y and S with y < S .  Then 

where 

( 3 . 8 ~ )  

where X is an I x 1 matrix with 

x y y  = xy 

y < S .  (3 .8b)  

The first trace in ( 3 . 8 ~ )  is over the replica indices y and comes from the determinant 
in the Gaussian integrals over m: for r e  r. 

In the limit N + CO, mean field theory should become exact and the free energy is 
determined by the saddle point of ( 3 . 8 ~ )  with respect to the variables qys,  m: for 
r e r , , ,  t y 6 ,  x Y  and yy, in the limit that the number of replicas l + O .  The saddle-point 
values of these quantities constitute order parameters, whose identifications (within 
the context of the replicated system) are as follows: 

X Y ~  = X ~ Y  = q ~ S  

(3.9) 

( 3 . 1 0 ~ )  

(3 .10b)  

( 3 . 1 1 ~ )  

(3 .11b)  



The Hopjeld model 292 1 

We shall seek for a saddle point of (3.8) only within the replica-symmetric space for 
which 

(3.12) 

x y = x  

y y  = y. 

Physically the replica-symmetric ansatz expresses the assumption that there is only 
one thermodynamically relevant free energy valley associated with each nominated 
configuration. The validity of this assumption will be discussed later in this section. 

Within the replica-symmetric framework one can now proceed to identify the 
physical significance of the order parameters, through their 1 + 0 limits. Firstly we see 
that 

m, = ((2 v : ~ ) -  1) V,)  (3.13) 

measures the overlap of the nominated configuration r with the thermodynamic state. 
Secondly the order parameters 

and  

( 3 . 1 4 ~ )  

(3.14b) 

together characterise the mean and thermal fluctuations of the 'spin glass' order of the 
thermodynamic state. Finally 

and  

( 3 . 1 5 ~ )  

(3.15b) 

together characterise the mean and thermal fluctuations of the overlap between the 
thermodynamic state and  those nominated configurations with which its overlap is 
microscopic. The order parameters m,, q and t are similar to those appearing in the 
S model (Amit er a1 1985a). The order parameters x and y are peculiar to the V model, 
reflecting the lack of symmetry between the two neuron states in this system. 

In formulating the saddle-point equations we shall impose two further conditions. 
Firstly we will assume that all replicas have a macroscopic overlap only with the 
nominated configuration r = 1 (so that only m ,  is non-zero); higher energy mixture 
states can be obtained by assuming macroscopic overlaps with more than one of the 
nominated configurations. Secondly we will restrict our explicit analysis to the zero- 
temperature ( P  + CO) limit most immediately relevant to the noise-free Hopfield model; 
the behaviour at finite temperature will be discussed in qualitative terms. 
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In the zero-temperature limit, then we find the following saddle-point equations 
for the five order parameters m , ,  q, t ,  x and y :  

(3.16) 

x = :( 1 + erf(z+) - erf( z-)) 

m ,  = +(er f (z+)+er f (z_) )  

and  

1 
P ( x  - 4 )  = 2 ( 2 T a t ) 1 / 2  [exp(-z:) +exp(-z?)] 

where 

z ,  = (m, * 4 ( P ( y  - t )  - l ) a ) ( 2 a t ) - ’ ”  

and erf(z) is as in ( 2 . 8 ~ ) .  
The energy (per site) is given by 

E =  - I m , - + a ( t - x ) .  I 2  

(3.18) 

(3 .19)  

(3 .20)  

(3.21) 

(3.22) 

The saddle-point equations (3.16)-(3.22) can be solved numerically. In the p -+ CC limit 
the thermal fluctuations measured by the differences x - q and y - t vanish; the products 
P ( x  - q )  and P ( y  - t )  remain finite. The parameters with the most immediate physical 
significance are m , ,  q and t and it is on these that we shall focus. 

There are two kinds of solutions. For all values of a there exists a solution with 
m,=O but with values of q and t which differ from their high-temperature fully 
disordered limits ( q  = t = a ) .  This is a spin glass solution with no macroscopic overlap 
with any nominated configuration. For a < a ,  = 0.069 (cf figure 2 )  there exists a further 
solution, characterised by a non-zero value of m l .  For this ‘ferromagnetic’ solution 
the thermodynamic state has a macroscopic overlap with the pattern r = 1 .  For a,> a > 
a 1  = 0.025 the ferromagnetic solution has higher energy than the spin glass solution; 
for a < a 1  the ferromagnetic solution represents the state of minimum energy. 

The value of the order parameter m ,  provides the most immediate measure of the 
efficiency with which the model acts as an  associative memory. Specifically, to the 
extent that one may regard the thermodynamic state as representative of the typical 
dynamically stable state singled out by the configurational flow from a nominated 
image (cf remarks at the end of 0 1 and in 5 4 below) one may identify the error-free-bit 
fraction (1 .7b )  as 

(3.23) 
The mean field results (figure 2 )  show that FB remains close to unity throughout the 
region of metastability of the ferromagnetic phase, right up  to the critical storage ratio 
for which FB(a,) = 0.984. Accordingly, for a < a,, one may expect that the V model 
does indeed provide an  effective form of associative memory. 

At zero temperature the order parameter q(  = x )  measures the mean fraction 
of bits with value 1. Throughout the ferromagnetic (accurate retrieval) phase this 
parameter remains close to 0.5 (figure 2 ) ;  for cy -+ a ,  one finds q += q(a,)  = 0.501, 
implying only a small asymmetry between the two neuron states. 

F -1 
B - 2 + m I .  
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0 . 0 4 0  0.048 0.056 0.064 0.072 
a 

Figure 2. The order parameters I (3.15a), q ( 3 . 1 4 ~ )  and m ,  (3.13) as functions of the 
storage ratio a, according to the replica-symmetric mean field theory. For a > acr  m , ( a )  = 
0; t (a ; )  = 0.7. 

The most obvious pretransitional behaviour as a + a c  is displayed by the order 
parameter t = y which measures the mean square overlap between the thermodynamic 
state and nominated configurations other than r =  1. For small a this parameter 
approaches the limit ( t  = 4) appropriate if the overlaps involved are purely random; 
as a increases, t grows, signalling a growing correlation between the thermodynamic 
state and the other ( r  # 1) configurations; for a + Gc one finds t + t (  a,) = 0.7; as a, is 
approached from above, through the spin glass phase, t + t (  a:) = 5.1. 

Equations (3.16)-(3.20) are similar to those obtained by Amit et a1 (1985b) for the 
S model. At zero temperature there is again an approximate scaling relation between 
the two models which becomes exact only as a tends to zero. Specifically, if one writes 
q = x =+, p ( y  - t )  - 1 = 0, then (3.16), (3.18) and (3.19) are the same as those of the S 
model provided one replaces t by 212, a by a12 and m, by m,/2. Since, for small a, 
q and x are indeed close to i while [ p ( y - t ) - l ] a  is small for the ferromagnetic 
solution, the two models are indeed nearly equivalent in this regime (given the 
replacement a + a / 2 ) .  For the spin glass solution, q and x are again close to i and 
[p(y  - t )  - 13. is again small and so the models are again virtually equivalent. 

The mean field equations at finite temperature can also be derived from (3.8). The 
phase diagram of the V model is similar to that of the S model. At high temperature 
the system is paramagnetic (with q = i ,  x = i ,  r = 1 / ( 4 - p ) ,  y = ( 4 + p ) / p ( 4 - p ) ) .  At 
a temperature T&a)  the system freezes into a spin glass phase. For all values of a in 
this phase, there is a (replica-symmetric) spin glass solution ( q  # 4, x # i and m, = 0) 
while for sufficiently small values of a(<ac( T)) there is also a ferromagnetic solution 
having a finite correlation with the nominated configuration (m,  # 0). For a < a,( T )  
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this solution has lower free energy than the spin glass solution; for a l (  T )  < a < a,( T )  
the ferromagnetic solution is metastable. 

All these results have been obtained in the context of the replica symmetric ansatz 
(3.12). However for low temperatures (Amit et al 1985a) this solution becomes unstable 
and so replica symmetry must be broken for both the ferromagnetic and the spin glass 
solutions. Since, for the ferromagnetic solution, the instability line T = TR( a) is very 
close to the zero temperature axis for a < a,(O)  ( TR(a)  - & exp( -+a) as a + 0) it is 
reasonable to expect that the effect on a, is small. 

In the following section we present numerical studies of the V model, conducted 
in the light of the predictions of the mean field theory, assembled in this section, 
notably the existence of a critical storage ratio ac. As we have already remarked, the 
connection between the T = 0 thermodynamics and the observed dynamic behaviour 
of the model is a subtle one; further discussion is deferred until after the presentation 
of the numerical results. 

4. Numerical studies 

4.1. Preliminaries 

In tandem with the analytic work described in the preceding sections we have performed 
a Monte Carlo study of the V model. The simulations have been carried out using the 
ICL Distributed Array Processor (DAP) which is particularly well suited to the study 
of the configurational dynamics of single-bit (logical) variables of interest here (see, 
e.g., Bowler and Pawley 1984). We have addressed two issues. Firstly, to complement 
the calculations reported in 0 2, we have studied the error-free-image fraction Fl. 
Secondly we have studied the error-free-bit fraction pB (and related quantities), with 
particular emphasis on the 'phase transition' which (according to § 3) it may be expected 
to exhibit as the storage ratio is increased. 

These two quantities have a somewhat different status. The former is clearly 
independent of the specific way in which the configurational dynamics is defined: a 
nominated configuration is stable if and only if (2V;"-  1) = sgn In contrast, the 
second quantity does, in principle, reflect ;he configurational dynamics: the fraction 
pB characterises the typical configuration V ( r )  singled out by the configurational flow 
from V'". We have investigated two configuration updating schemes. In the first 
scheme (as adopted by Hopfield (1982))  the switching of the local variables to the 
states favoured by the local effective field ( I b )  takes place randomly and asyn- 
chronously: one local variable is selected at a time and switched (if necessary) to the 
state then favoured. In this scheme the assembly energy (1 a )  is a strictly decreasing 
function of time. In the second scheme the state of each local variable is checked and 
such switching as is necessary is simultaneously implemented at each site with probabil- 
ity one-half (so that, within any one updating operation, on average one-half of those 
variables in unfavoured states will be switched). In this scheme the energy is not 
guaranteed to decrease at each step but will do so with a probability which differs 
from unity only through a small finite size effect. 

4.2. The stability of nominated configurations 

We have calculated the error-free image fraction Fl ( 1 . 7 ~ )  for assemblies with N 
ranging from 54 to 512, and for a range of values of the storage ratio a = n /  N.  The 
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implied stability check is efficiently implemented in the parallel architecture of the 
DAP: for N = 512 and n = 24 the stability check of one complete set of nominated 
configurations required 1.1 s. 

The results are shown in figure 3. They are consistent with those (for N = 30 and 
N = 100) reported by Hopfield (1982) but are considerably more precise. (The statistical 
uncertainties are smaller than the symbol sizes.) 

0 0.08 0 .16 0 . 2 4  
a 

Figure 3. The error-free-image fraction F,( N,  a) for the V model, according to the numerical 
simulations for systems of various sizes ( x , N = 64; 0, N = 128; 0, N = 256; 0, N = 512). 
The statistical uncertainties are smaller than the symbol sizes. 

Comparison with the analytic theory developed in § 2.3 is effected in figure 4 which 
shows a plot of --It-' In F, against a. For the larger assemblies the data are consistent 
with the form emerging from the asymptotically exact calculation (§ 2.3). The full 
curve represents the function f ( A  = 0, a )  defined in (2.22). 

4.3. Stable Configurations 

We now turn to a study of the stable configurations of the V model singled out by the 
configurational flow from nominated configurations. Our studies have been conducted 
on assemblies with N ranging from 128 to 4096, with particular emphasis on values 
of n yielding storage ratios in the vicinity of the critical value, ac, identified in the 
replica-symmetric mean field theory. For each pair of values, N and n, we generated 
a number N, of sets each consisting of n random N-bit configurations. The existence 
of large set-to-set fluctuations in the observables of interest (particularly in the vicinity 
of a,) necessitated compensatingly large N, values; for example, for N = 1024 and 
a = 0.066 we studied N ,  = 50 different sets. Each image in each set was used as the 
starting configuration for one or other of the forms of updating discussed in 0 4.1: in 
the data presented below the random serial updating was used for all N except for 
N = 1024 for which we used the random parallel updating scheme. In each case the 
configurational flow was followed to completion. The flow times were found to depend 
sensitively upon the storage ratio (as well as the system size and the updating scheme): 
thus, for example, with N = 1024 the typical CPU time per vector (to iterate to comple- 
tion) was 0.42 s for a = 0.047 and 3.7 s for a = 0.07. The Hamming distance D (1.6) 
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Figure 4. Comparison of the numerical simulations and the analytic theory for the error-free- 
image fraction. (-,analytical theory; 0, N = 512; 0, N = 256; 0, N = 128; X ,  N = 64.)  

between each initial configuration V"' and the corresponding stable image e'') was 
determined and the Nsn observations for each pair N, n were used to determine the 
Hamming distance distribution p (  D ;  a,  N ) .  

The Hamming distance distribution typically consists of two components. One 
component lies close to D = 0 and is thus associated with stable configurations e'r) 
correspondingly close to their progenitors V"'. The other component lies close to 
D = 0.5 and is thus associated with configurations e'') whose overlap with the starting 
configurations V'" is correspondingly close to random. Both these statements require 
refinement, which we defer until the end of this section. 

As noted by Amit et a1 (1985a) in the context of the S model, the evolution of 
p ( D ;  a, N )  with N shows qualitative differences according to the size of the storage 
ratio a. For small enough a (figure 5) the weight in the high D peak is transferred 
to the low D peak with increasing N ;  for large enough a (figure 6), in contrast, the 
weight shifts from the low D peak with increasing N. 

The phenomenon is revealed more quantitatively and systematically in figure 7 
where we show the weight W in the low D peak, as a function of 1 / N  for various 
values of a. (In practice we took W to measure the fraction of the distribution 
associated with fractional Hamming distances D < i ;  since the two peaks in the 
distribution are well separated the value assigned to W is rather insensitive to the 
details of this prescription.) The data are consistent with a bifurcation at a value 
a = a. in the vicinity of 0.068, with W assuming limiting values 0 or 1 according to 
the sign of a - ao. The close correspondence between this suggested bifurcation point 
and the critical storage ratio a ,  identified in the mean field theory is noteworthy. 
However, even after some 300 h of DAP time, we cannot exclude the possibility that 
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Figure 5. Histogram representing the Hamming distance distribution p (  D )  for a = 0.0625. 

1096 ---_- 
0 0 2  0 4  06 0 8  1 0  

Fractional Hamming distance 

Figure 6. Histogram representing the Hamming distance distribution p (  D )  for a = 0.0703. 

05-, " .  , , , 
0 002 0 004 0006 OOCB 0 

1 IN 

Figure 7. The weight W in the low Hamming distance peak of the distribution p (  D )  for 
various a as a function of l / N  (E, 0.0625; 0, 0.0664; *, 0.0683; 0, 0.0703; 0, 0.0781). 
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W remains a continuous function of a as N increases; the computational difficulty 
can be gauged from the large sample to sample fluctuations revealed by the histogram 
of peak weights of 46 individual samples for a = 0.0664 (270 nominated configurations 
with 4096 nodes) shown in figure 8. In the absence of a deeper understanding of the 
relevant finite size effects we thus prefer not to make a more definitive claim regarding 
the existence and location of ao. The assignment a. = 0.073 1 * 0.005 made in a pre- 
liminary presentation of this work (Wallace 1986) was based on an extrapolation 
procedure which relied much more heavily on theoretical prejudices. This value is, 
we now believe, too high: moreover, the quoted statistical error does not reflect the 
systematic uncertainties associated with the prescription for the extrapolation from 
the finite systems. 

0 5 1  

r 

1 
W 

Figure 8. Distribution of peak weights, W, for individual samples with n = 270, N = 4096. 

In this context we note also that, in their analysis of the S model, Amit er a1 
(1985a, 1986) found that their peak weight data could be well represented by the form 
W = A exp[ B N ( a o -  a ) ]  (for a > a0) and made this the basis of their assignment of 
a. for that model. However, as is evident from the strong curvature in the logarithmic 
plots shown in figure 9, our data cannot be satisfactorily represented in this way. 

A further comparison between the thermodynamic and dynamic analyses is provided 
in figure 10. We show the error-free-bit fraction E determined from the simulation 
through (1.76) as a function of cy, for various N, together with the result of the mean 
field calculation based on (3.23). Again there is substantial support for the existence 
of singular behaviour at a value of a close to the predictions of the mean field theory. 
Quantitatively, however, it is clear that in the regime of good recall ( a  < ao) the 
simulations exhibit a substantially greater fraction of errors (i.e. a fraction differing 
from unity by substantially more) than is suggested by the mean field theory. In a 
large measure this is due to those finite size effects which are expressed in the existence 
of the peak in the distribution at large Hamming distance, the weight of which, we 
have suggested, vanishes in the thermodynamic limit (for a < ao). Indeed, if one 
calculates the mean fractional Hamming distance D, and thence the fraction E ,  
utilising only those configurations associated with the low Hamming distance peak 
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Figure 9. The logarithm of the low Hamming distance peak weight, for various a, as a 
function of N (*, 0.0683; 0, 0.0703; A ,  0.0781). 
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Figure 10. The error-free-bit fraction e,( N, 0 )  determined from the mean field theory 
(through (3.23)) and as given by the numerical simulations (through (1.7b)) for various N 
(0, 128; 0, 256; 0, 512; *, 1024; +, 4096, - mean field theory), as a function of a. 

(and thus eliminating this gross finite size effect) one finds substantially better accord 
with the mean field prediction (cf figure 11). 

Two issues merit further elaboration. Firstly we return to the question of the 
dependence of the results upon the details of the updating scheme. As stated, all but 
the N = 1024 data presented here were accumulated on the basis of the asynchronous 
Hopfield algorithm. The partially parallel algorithm is, of course, particularly well 
suited to the DAP and we have used it in the case of the N = 1024 network. The data 
thus generated match smoothly onto the data yielded by the asynchronous study of 
other-sized networks. Moreover, separate studies at selected N and n values using 
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Figure 11. The error-free-bit fraction FB( N, a )  obtained from the numerical simulations 
including only the states associated with the low Hamming distance peak in p (  D), compared 
with the mean field prediction (3.23) (0, N = 128; 0, N = 256; 0, N = 512; *, N = 1024; 
+, N = 4096, -, mean field theory). 

both schemes yield results which are quantitatively consistent with one another. We 
conclude that, at the level of statistical accuracy realised in the present study, any 
difference between the two schemes is not apparent. 

Finally we return to the structure of the Hamming distance distribution. First we 
remark that, when viewed on a finer scale than that used in figures 5 and 6, one finds 
(cf figure 12) that the low Hamming distance peak is actually centred on a non-zero 
value of D. Secondly (cf figure 13) we note that the high Hamming distance peak is 
centred not on D = f but on a value of D (weakly dependent upon CY) somewhat lower 
than this. We shall take u p  these issues in the concluding section to which we now turn. 

0 . 1 2 -  

0 0 . 0 0 4  0.008 0.012 
Fract ional  Hamming distance 

Figure 12. The low D structure of the Hamming distance distribution for N=4096, 
a = 0.0683. 
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Figure 13. The high D structure of the Hamming distance distribution for N =4096, 
a = 0.0703. 

5. Discussion and conclusions 

We must now address the problems inherent in the comparison of the numerical work 
described in the previous section with the analytic studies of § 3. The numerical work 
faithfully realises the model of interest. The analytic work does so only to the extent 
that we may trust three key assumptions which we now identify. 

Firstly, and most obviously, the steepest descent arguments effectively assume the 
thermodynamic limit ( N ,  n +oo with a = n/ N fixed). Secondly, the replica-symmetric 
ansatz (3.12) assumes that there is only one equilibrium state with a macroscopic 
overlap with a given nominated configuration. Thirdly, in interpreting the results of 
the mean field theory we effectively assume that the flow from the nominated configur- 
ation will always terminate in that thermodynamic state with which it has macroscopic 
overlap, as long as it exists (i.e. for a < a,) and will otherwise terminate in the 
thermodynamic (spin glass) state which has no memory of the initial configuration. 

Within these approximations the Hamming distance distribution studies in the 
preceding section may be expected to consist of a 6 function centred on the mean 
Hamming distance, whose location undergoes a discontinuous change at the value 
a,  = 0.069 determined by the replica-symmetric theory. 

Of the three approximations it is the first (the presumed thermodynamic limit) 
which, we believe, accounts for the bulk of the mismatch between the analytic and 
the numerical work. Although we have not attempted to refine the arguments of 3 3 
to incorporate finite size effects in a formal way, intuitively their consequences seem 
clear: for finite n and N the fluctuations in the Hamming distance will no longer be 
small on the scale of its mean and the sharp (&function) structure of the distribution 
will be replaced by a structure whose width, one may anticipate, will be of order 1 / m .  
Moreover, one would expect the sharp transition at a,  to be replaced by a regime of 
phase coexistence whose a width vanishes in the thermodynamic limit. These expecta- 
tions are in qualitative accord with the observations recorded in the preceding section 
(cf especially figures 5, 6 and 7) .  

We now consider the second approximation. As noted in P 3 the replica-symmetric 
solution to the (zero-temperature) mean field equations is actually unstable. It seems 
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unlikely that the quantities studied in 5 4 will be particularly sensitive to this instability. 
Nevertheless the effect should, in principle, manifest itself in an upward shift of a ,  
with respect to the replica-symmetric prediction. Indeed, in a recent paper Crisanti 
et a1 (1986) have estimated the effect for the S model and find that the implied shift 
(from ( ~ ~ 2 0 . 1 3 8  to a,-0.144) leads to better agreement with the transition point 
suggested by their numerical studies (although the shift is actually smaller than the 
uncertainty they associate with the numerical prediction). They also find that the 
replica symmetry breaking leads to a decrease in the limiting ( a  + a,) value of the 
mean Hamming distance (an increase in the error-free-bit fraction). In our case it is 
clear that the uncertainties in locating the dynamic instability point of the model, a,, 
are likely to be large compared with the likely shift in a ,  associated with replica 
symmetry breaking. There is some suggestion (figure 11) that, close to the instability, 
the error-free-bit fraction is indeed higher than the replica-symmetric prediction, but 
residual finite size effects make it difficult to interpret this difference. 

Finally we turn to the third key assumption. The central issue here is the extent 
to which the consequences of an essentially non-ergodic dynamics can be captured by 
equilibrium statistical mechanics. In fact it is clear that the thermodynamic (minimum 
energy) states captured by the mean-field calculation do not exhaust the spectrum of 
dynamic-equilibrium states which can represent the endpoints of configuration flow. 
Analysis shows (Gardner 1987a) that, clustered around each of the two thermodynamic 
states envisaged in the mean-field calculations of 5 3 (the ‘correlated’ state with mean 
Hamming distance close to zero and the ‘uncorrelated’, spin glass, state with mean 
Hamming distance 0.5) there exists a band of other states which, though higher in 
energy, are stable against one-spin-flip dynamics. As in the case of the spin glass (Bray 
and Moore 1980) the number of states in each of these bands is exponentially large 
in N and so it is likely that it is amongst these states (rather than the thermodynamic 
states) that the configurational flow will terminate. The quantitative implications of 
this picture remain to be determined. However, two qualitative consequences may be 
usefully identified. 

Firstly it is possible that the transition point a. (the bifurcation point in the 
configurational flow) may not coincide with the transition point a ,  (the limit of stability 
of the correlated equilibrium state or its replica symmetry broken counterpart). In 
particular a. might exceed a ,  if the non-equilibrium states making up the correlated 
band were to persist above a,  where the thermodynamic correlation state no longer 
exists. ( I t  is also possible that a,< a ,  since the existence of the correlated band does 
not guarantee that it will capture the configurational flow.) As with the effects of 
replica symmetry breaking the data presented in the preceding section only allow us 
to draw a tentative conclusion: any difference between cyo and a, seems likely to be small. 

Secondly it is clear that the Hamming distance distribution must differ from that 
implied by the thermodynamic argument. Specifically, although we anticipate that the 
distribution will remain sharp (in the thermodynamic limit) its peaks (associated with 
the two bands of states) will not in general coincide with the thermodynamic equilibrium 
states. While our data provide no unambiguous evidence for a shift in the peak 
associated with the correlated states, there is clear evidence (figure 13) that the peak 
associated with the band of nominally uncorrelated states is shifted below the thermody- 
namic prediction ( D  = {) implying a remanent overlap between initial and final states 
(Kinzel 1986) even above cyo. 

It  is clear that there remain many questions meriting further study. First, detailed 
study of the size of the basins of attraction associated with the nominated configurations, 
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and of the time taken to iterate to them, would give a more explicit indication of how 
well associative memory works in the Hopfield model. (Some aspects of the associative 
functioning of the S model have been explored by Kinzel (1985a).) Second, there are 
interesting questions to be resolved regarding the possibly hierarchical (‘ultrametric’) 
structure of the equilibrium states of the model (MCzard er a1 1984). Third, it would 
be interesting to study quantities more sensitive to the existence of replica symmetry 
breaking. 

There are also many proposed generalisations of the model (some of which actually 
predate it: see Cohen and Grossberg (1983)). It is possible to increase the storage 
capacity by utilising multiple-neuron interactions (Gardner 1987, Psaltis and Park 
1986, Chen et a1 1986, Maxwell et a1 1986). It may also be possible to produce a 
dramatic improvement in the storage capacity by imposing a hierarchical organisation 
upon the configurations to be stored (Dotsenko 1985, Parga and Virasoro 1987). The 
role of time-dependent neuron interactions in the learning process has also attracted 
much recent attention (Toulouse et a1 1986, Personnaz et a1 1986, MCzard et a1 1986, 
Parisi 1986). Finally, there are extensions of the perceptron learning algorithm (Minsky 
and Papert 1969), which are based on iterative application of the storage prescription, 
and important generalisations with hidden neurons which should capture more compli- 
cated correlations between patterns (Ackley et a1 1985, Rumelhart et a1 1985). 

These and related issues are the subject of continuing study. 
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